
2. QUASI-STATIC FIELDS 

Abstract — In order to improve the finite element modeling of 
macroscopic eddy currents, a quadratic energy-based error 
criterion is obtained from a thermodynamic description of 
electromagnetism. Attention is first paid on the analytical 
derivation of the criterion in a general sense — i.e. without any 
assumption about the potential formulation and including 
possible body motion — especially to validate its relevance in 2D 
or 3D and to stress its independence from the formulation or the 
kind of application. A 3D-validation is given on an induction 
heating process: the conservation of the electromagnetic power is 
assessed locally and, as expected, the ill-checked elements in the 
skin depth are highlighted. 

I. INTRODUCTION 

Eddy currents are at the origin of losses and signal 
distortions in power electrical devices. In order to address their 
considerable impacts on both the energy efficiency and the 
performance requirement, eddy currents modeling and its 
accuracy are discussed from a thermodynamic approach. 

While some former attempts, e.g. [1][2], are focused on the 
consistency of the magnetostatic resolution, the proposed error 
criterion is fully dedicated to the evaluation of the dynamic 
aspect in massive conductor where the skin effect occurs. It is 
independent of the formulation, and allows taking body motion 
into account. 

A presentation of the variational approach of 
electromagnetism is first proposed. Then the error criterion is 
naturally derived. Finally, some numerical results obtained by 
Finite Element computation on an induction heating process 
are presented. 

II. VARIATIONAL FORMULATION 

Classically, thermodynamic approaches of 
electromagnetism do not consider any extension towards time-
varying regimes [3][4][5]. Whereas some improvements are 
summarized in [6] for steady states regimes, no general 
contribution is available for transient. Denoting as a general 
rule in this work, variational parameters or functional thanks to 
italic fonts whereas roman ones specify their values at the 
minimum, the magnetodynamic behavior of any electrical 
system is derived from the functional [7]: 
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where the functional in the RHS exhibits: 
• the magnetic field H related to free and displacement 

currents according to the Maxwell-Ampere equation. 
The quasi-static approximation enforces D≡0 in 
conductors; 

• the Joule losses PJ monitored in conductors. This term 
is even to respect invariance of losses with the inversion 
of time (σ −1 is the resistivity); 

• the variation with time of the electromagnetic energy 
coupling the field with the generator I and the mass V0; 

• the magnetic B(h) and electrostatic D(e) behavior laws 
derived from thermostatic equilibrium of the Gibbs 
potential: 
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Extending the electric field in the conductor according to 
Ohm’s law E = σ −1J − V×B, Faraday’s law curl E = −∂tB may 
be viewed as a local result of the global trend towards 
reversibility expressed by (1) [8]. This striking property 
provides a thermodynamic oriented insight of the variational 
theory of electromagnetism [9]. Hence, the functional (1) 
balances the variations with time of the co-energy (−G) and the 
mechanical power received from the field by the actuators 
(−Pmech). 

In order to consider sub-systems for design purpose, it is 
convenient to introduce the electrical power: 
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After some calculations, it follows: 
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where F is the Helmholtz’s potential and [⋅] denotes the 
discontinuity occurring at the interfaces ∂Ωi⊂Ω. At the 
minimum of the functional (1), the Maxwell equation set and 
Ohm’s law are checked so that: 

• the first three residual terms vanish in (4). After some 
tedious calculations on the motion induced-conductor 
interface discontinuities, the two last terms provide the 
mechanical power supplied by the field: 
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where the first term denotes a vanishing “impulsion” 
term within the quasi-static approximation; the second 
one is related to the power of the Laplace’s force; and 
the third one gathers the switching reluctance effects 
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occurring at the various interfaces of the domain 
Ω.  For conductors with linear magnetic behavior law, 
these three contributions may be lumped in the 
Maxwell’s stress tensor. As a result, the relation (4) 
matches the integral form of the Poynting’s 
conservation equation. Hence, 

• the contribution of Ω to (1) reads: 
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The previous approach addresses a thermodynamic-oriented 
justification of the Finite Element Method, which consists in 
building an approximation of the stationary conditions 
expressed at Eqs. (1) and (2) but with a finite number of 
degrees of freedom. By inspection of (4), the consistency of 
any transient solution with energy conservation may be 
assessed through the local deviation of the Poynting's equation: 
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Indeed, strictly enforcing two relations among Maxwell-
Ampere or Maxwell-Faraday equations and Ohm's law, the 
error criterion (7) highlights the elements where the remaining 
one is ill-checked. 

III.  NUMERICAL RESULTS 

Due to its quadratic definition, it should be noticed that the 
criterion (7) is dedicated to all kinds of formulation even 
though, restoring locally the state variables of the whole 
system, current-based formulations are naturally compliant 
with the thermodynamic approach. Nevertheless, the error 
criterion (7) was first implemented in 2D-transient – i.e. within 
the magnetic vector potential formulation – to check the 
convergence of the accuracy of the eddy-current computation 
in a Thomson effect device [10]. In spite of significant eddy 
currents therein, the latter could not provide a general situation 
because magnetic parts were missing. 
In order to check the behavior of the criterion in 3D, an 
induction heating process was modeled within a time-harmonic 
regime (Fig.1). As the mesh is refined in the skin depth, the 
error criterion is decreased therein. Global convergence of 
functionals (2) and (6) will be provided in the extended paper. 
To do so, electric field calculation has to be post-processed in 
the air region as the result of a magnetostatic-like problem 
(where −∂tB acts as a source term therein and [E]×n = 0 is 
enforced at the conductor boundaries ∂C). 

IV.  CONCLUSION 

The energy-based error criterion allows refining the 
conducting regions where the mesh is too coarse, with respect 
to the skin effect occurring therein. In addition to the error 
criterion, the thermodynamic approach provides the 
functionals from which the global convergence should be 
evaluated. Subsequent post-processing development should be 
considered to extend the criterion in the air region and fully 
address, by an iterative coupling with a meshing procedure, an 
adaptative meshing technique. 

 

 
Fig. 1. Induction heating process: Error criterion (7) in the conducting region 
for the initial (top) and the refined (bottom) meshes. As the mesh is refined in 
the skin depth, notice the spread reduction of the criterion (7) therein. 
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